除此之外,由AI驱动的预测引擎还可以识别可能导致系统崩溃的故障区域。值得一提的是这项技术的自主性,因为AI不仅可以用来预测中断,而且可以用来预测可能受到中断影响的用户,并提出从中断中恢复的策略。
三、将优化工作量分配
预测分析将使工作负载分配成为可能。 过去,IT专家曾经负责优化公司中服务器的性能,从而确保正确分配工作负载。
大化优化可确保降低成本和更好地分配资源,这两个因素对于组织的数字化运营至关重要。但是,IT团队通常人手不足或没有足够的资源来密切关注24/7这个复杂的流程,因而受到限制。
AI使用功能强大的算法,能够立即执行大量计算,并优化存储并实时确定负载平衡。
四、将实现无人自动化
自动化是AI最重要的部分之一,最近的发展使组织可以尝试使用所谓的“ lights out”数据中心。简而言之,这些数据中心不必由人员监视和监督。
无人驾驶的自动化将使传统的数据中心过时,而传统的数据中心已经过时,这些中心可以进行有效的计算并减少数据消耗,而这些数据中心已被技术人员监督。目标是通过降低氧气含量来降低火灾风险,更有效的冷却设计,通过增加机架高度并使机器人可以访问等方式来提高存储容量,从而实现更高的效率和自主性。
未来将使用DCMI软件对由AI驱动的数据中心进行远程监控,并且由于无人值守的自动化,将人为错误的发生率降至最低。
五、将提高安全性
数据中心容易受到不同的网络威胁的威胁已经不是什么秘密了,黑客们总是四处寻觅,寻找新的方法来抢夺敏感数据。
问题在于,当他们设法侵入组织的网络时,他们可以获得对数百万用户的个人和机密信息的访问权。 预防网络威胁的关键在于预期和及早发现。
这就是每个组织都聘请数据安全专家来防止这些事件的原因。但是,分析网络攻击是一项艰巨而耗时的任务,这就是为什么AI及其强大的分析能力可以使执行此任务的人感到惊奇的原因。即,人工智能将学习正常的网络行为,这意味着它将能够注意到任何偏离它的行为。这种偏离通常是不同安全威胁的结果。